1H-Pyrazolo[3,4-b] pyridines

H. Höhn, Th. Denzel and W. Janssen

Chemische Fabrik von Heyden GMBH, Regensburg, Germany

Received March 25, 1971 - Revised August 10, 1971

The synthesis of a number of new 1*H*-pyrazolo[3,4-*b*] pyridine-5-carboxylic acid derivatives is described. Most of these compounds have either an alkoxy or a basic substituent in position 4.

Compounds containing a pyrazolo [3,4-b] pyridine nucleus have been described previously (1-12). In some of these publications it is stated that several of these compounds represent a new type of purine or pyrimidine antimetabolite (4,8-11). Moreover, a number of pyrazolo-[3,4-b] pyridines have been reported to possess hypotensive and vasodilator activity (12). In the course of the development of a synthetic program for various pyrazolopyridines, we have prepared a number of pyrazolo[3,4-b]pyridine-5carboxylic acid derivatives, including compounds with various substituents in position 4. This type of compound has been found to be a potent inhibitor of various adenosine, cyclic 3',5'-(hydrogen phosphate) [cyclic AMP] phosphodiesterases (13). In view of the current interest in the biological activities of adenosine, cyclic 3',5'-(hydrogen phosphate), we wish to describe the properties of these novel pyrazolo[3,4-b] pyridine-5-carboxylic acid derivatives and general procedures for their preparation.

The general synthetic routes for the preparation of the various pyrazolo[3,4-b]pyridine-5-carboxylic acid derivatives are outlined in Scheme I. The preparation and properties of the required 5-aminopyrazoles (I) have been described previously (14). The condensation of the aminopyrazole with diethyl ethoxymethylenemalonate gave the desired diethyl 5-pyrazolylaminomethylenemalonates (II), listed in Table I. Heating these malonates in diphenyl ether at 230-260° resulted in ring-closure and the formation of ethyl 1-alkyl-4-hydroxy-1H-pyrazolo[3,4-b]pyridine-5-carboxylates (III) listed in Table II. The cyclization may also be carried out using phosphorus oxychloride as the condensing agent, in which case the products bear a chlorine atom in position 4 instead of an hydroxyl group. These 4-chloro derivatives, IV, which are listed in Table III, may also be formed by the reaction of III with phosphorus oxychloride.

The alkylation of ethyl 4-hydroxy-1*H*-pyrazolo [3,4-*b*]-pyridine-5-carboxylates (III) was accomplished by reaction with an alkylating agent, such as an alkyl halide or an aralkyl halide in an inert solvent in the presence of po-

tassium carbonate. The alkylation occurred as indicated since the same alkoxy compounds could be formed by the reaction of a 4-chloro derivative, IV, with the appropriate sodium alcoholate. The 4-alkoxy derivatives (V) are listed in Table IV.

SCHEME 1

The alkoxy group in the 4-position of ethyl pyrazolo-[3,4-b] pyridine-5-carboxylates is quite labile, since treatment with at least an equivalent amount of hydrazine or a substituted hydrazine in the presence of a catalytic amount of zinc chloride resulted in the formation of ethyl 4hydrazinopyrazolo [3,4-b] pyridine-5-carboxylates (VI). These 4-hydrazino derivatives could also be prepared by the replacement of the chlorine atom in IV by the hydrazino group. Condensation of the unsubstituted 4hydrazino derivatives with carbonyl compounds, both aldehydes and ketones, yielded the desired hydrazones (VII). The various hydrazines and hydrazones prepared are listed in Table V.

Similarly, derivatives in this series having an amino substituent in the 4 position could be prepared by the reaction of a primary or secondary amine with either a 4-alkoxy derivative (V) or a 4-chloro derivative (IV). These amino derivatives are listed in Table VI.

Various 5-carboxamides in this series were also prepared by hydrolysis of the ester to the acid, conversion to the acyl chloride and reaction with the appropriate amine. These amides are listed in Table VII.

The nmr and ir spectral data (15) of a number of representative compounds are given in Table VIII to confirm the structural assignments made in this series. A report on the structure of diethyl 1-ethylpyrazolyl-5-aminomethylenemalonate (II, R_1 = ethyl, R_3 = H) and diethyl 1-ethyl-3-methylpyrazolyl-5-aminomethylenemalonate (II, R_1 = ethyl, R_3 = methyl) has been published recently (16).

The nmr spectra of the various compounds showed the expected signal for the 1-ethyl group and the O-ethyl group of the esters listed in Table VIII, a triplet at about 1.30-1.57 ppm and a quartet at 4.28-4.58 ppm. The aromatic proton at the 6-position was observed as a singlet at 8.67-9.35 ppm. The substituent at the 3-position was also observed as a singlet at 8.03-8.45 for hydrogen and 2.63-2.70 for the methyl protons, with the exception of compounds XX and XXIII in which the 4-substituent caused an upfield shift due to shielding by the m-trifluoro-anilino and the diacetylhydrazino groups.

In the ir spectra of these representative compounds there are observed slightly broadened absorptions for the OH-stretching frequency. The low frequency shift to ca. $3400 \,\mathrm{cm}^{-1}$ is typical for intramolecular hydrogen bonding with the ester carbonyl group (position 5) in a sixmembered ring system of low energy (A and B). This is

$$R-0 \xrightarrow{C} \xrightarrow{N} \qquad \qquad R-0 \xrightarrow{C} \xrightarrow{N} \qquad \qquad R$$

also indicated by the shift to lower frequency of the carbonyl absorption to approximately 1660-1680 cm⁻¹ from 1720-1730 cm⁻¹ for unassociated aryl ester carbonyl groups (17). Since the 4-chloro derivative (XIII) is incapable of this hydrogen bonding, it shows the normal carbonyl absorption at 1730 cm⁻¹. From these results it can be concluded that IX-XII exist as 4-hydroxypyrazolo-[3,4-b]pyridines and not as the 4-pyridones. This conclusion is supported by the nmr spectra. In the 4-pyridone form (C) an interaction between the NH proton and the proton in position-6 would be expected, with a splitting of the signals of these protons (18,19). This is not seen in the nmr spectra, confirming the 4-hydroxy structure.

The carbonyl absorptions in compounds XIV and XV, in which no hydrogen bonding with the 4-substituent is possible, are more normal, appearing at $1765~{\rm cm}^{-1}$ in XIV and at $1720~{\rm cm}^{-1}$ in XV.

As in the case of the 4-hydroxy derivatives, the 4-amino derivatives XVIII-XX show an intramolecular hydrogen bonding as indicated by the shift of the carbonyl absorption to lower frequency, as well as a broad absorption band at $3220\text{-}3290~\text{cm}^{-1}$, characteristic of associated NH protons. Compound XVIII also shows a sharp strong absorption at $3450~\text{cm}^{-1}$ typical of the unassociated NH stretching vibration. These compounds do not exist in the γ -imino form since the proton in position-6 is not split, as would be expected if, for example, compound XVIII existed as D.

We have observed a similar situation for the pyrazolopyridines substituted in position-4 by hydrazine groups (when N^1 is not further substituted). The NH-stretching vibration in XVI and XVII is shifted to a lower frequency and the C=O valence frequency of the ester carbonyl group drops to 1670 and 1665 cm⁻¹, respectively. The two methyl groups of the hydrazone XVII are not magnetically equivalent, since they are located in *cis/trans* position to the free electron pair of the sp²-hybridized Natom and therefore, show different signals in the nmr.

$$N = C$$
 CH_3

A further question to be resolved was the position of the substituents on the hydrazino group in XXI-XXIII. The structural assignment as shown seem to be confirmed by the nmr and ir spectra. Thus, compound XXI shows two slightly broadened singlets at 6.55 and 10.40 ppm which disappear upon the addition of deuterium oxide. While the proton at 6.55 ppm exchanges rapidly, the proton at 10.40 was exchanged only after about 30 minutes, or the addition of deuteriotrifluoroacetic acid. In the ir spectra there is only one NH valence frequency and no NH2 bands. Similar observations were made with compound XXII. From the method of synthesis it is possible that XXIII could be a 1,2-diacetyl hydrazino derivative. In a variety of solvents (benzene, toluene, DMSO, ether, pyridine) only one singlet is indicated for both of the methyl groups of the acetyl residues in the nmr. We can conclude that both the methyl groups are magnetically equivalent and that XXIII probably has the assigned structure.

EXPERIMENTAL

The procedures given below are representative for the compounds described in Tables I-VII. Melting points and boiling points are not corrected and yields are generally for unrecrystallized products.

Procedure A. Diethyl (1-Ethyl-5-pyrazolyl)aminomethylenemalonate.

A mixture of 245 g. (2.2 moles) of 1-ethyl-5-aminopyrazole and 469 g. (2.2 moles) of diethyl ethoxymethylenemalonate was heated at 120° (bath temperature) for 2 hours with stirring. The ethanol formed in the reaction was removed by vacuum distillation (water aspirator). Distillation of the reaction mixture under reduced pressure gave 520 g. (84%) of oil, b.p. $154-160^{\circ}/0.1$ mm, which crystallized quickly and melted at $50-53^{\circ}$. A sample recrystallized from n-hexane melted at $55-57^{\circ}$.

Procedure B. Ethyl 1-Ethyl-4-hydroxy-1*H*-pyrazolo[3,4-*b*] pyridine-5-carboxylate.

A solution of 253 g. (0.9 mole) of diethyl (1-ethyl-5-pyrazolyl)-aminomethylenemalonate in 770 g. of diphenyl ether was heated to 235-250° (bath temperature) and maintained at this temperature for 1-2 hours, while the ethanol formed was allowed to distill from the reaction mixture. The last amount of alcohol was removed under reduced pressure. The mixture was fractionally distilled under reduced pressure; the ethyl 1-ethyl-4-hydroxy-1*H*-pyrazolo-[3,4-b]pyridine-5-carboxylate boiled at 115-120°/0.05 mm and weighed 195 g. (92%), m.p. 85-87°. A sample crystallized from ligroin (90-100°) melted at 87-89°.

Procedure C. 4-E thoxy-1-ethyl-1H-pyrazolo[3,4-b] pyridine-5-carboxylic Acid.

A suspension of 26.3 g. (0.1 mole) of ethyl 4-ethoxy-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate in 375 ml. of aqueous

sodium hydroxide (1.5 N) was stirred for 10 hours at room temperature. The clear solution was acidified with aqueous hydrochloric acid to yield 21.8 g. (92.5%) of compound, m.p. 198-199°.

Procedure D. n-Butyl 1-Ethyl-4-hydroxy-1*H*-pyrazolo[3,4-*b*]-pyridine-5-carboxylate.

A mixture of 10.3 g. (0.05 mole) of 1-ethyl-4-hydroxy-1*H*-pyrazolo[3,4-b] pyridine-5-carboxylic acid and 150 ml. of 1-butanol was heated under reflux for 4 hours, while a gentle stream of hydrogen chloride was passed into the solution. The solution was cooled and concentrated to dryness under reduced pressure. The residue was dissolved in about 50 ml. of water, the *pH* was adjusted to 8.0 with 10% aqueous ammonia, and a final adjustment of *pH* to 6.0 was achieved by the addition of 25% aqueous acetic acid. The precipitated butyl 1-ethyl-4-hydroxy-1*H*-pyrazolo-[3,4-b] pyridine-5-carboxylate was filtered, washed with water and dried in a desiccator. The product weighed 9.8 g. (75%), m.p. 69-70°. A sample recrystallized from petroleum ether (60-70°), melted at 70-71°.

Procedure E. Ethyl 4-Chloro-1-ethyl-1*H*-pyrazolo[3,4-*b*] pyridine-5-carboxylate.

A mixture of 23.5 g. (0.1 mole) of ethyl 1-ethyl-4-hydroxy-1H-pyrazolo[3,4-b]pyridine-5-carboxylate and 150 ml. of phosphorus oxychloride was heated under reflux for 4 hours, and the excess phosphorus oxychloride was then removed by distillation under reduced pressure. As soon as the phosphorus oxychloride had been removed, the residue solidified. It was triturated with water and filtered to give 24.5 g. (94%) of product, m.p. 55-60°. The ethyl 4-chloro-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate, after recrystallization from n-hexane, melted at 62-63°.

This compound was also obtained by the following procedure: A mixture of 12 g. (0.043 mole) of diethyl (1-ethyl-5-pyrazolyl)-aminomethylenemalonate and 70 ml. of phosphorus oxychloride was heated under reflux for 10 hours. The excess phosphorus oxychloride was removed by distillation under reduced pressure, and the oily residue, when suspended in 50 ml. of water, became crystalline. The solid was filtered and dried in a desiccator to yield 8.5 g. (79%) of product, which melted at 62-63° after recrystallization from n-hexane.

Procedure F. Ethyl 4-Ethoxy-1-ethyl-1H-pyrazolo[3,4-b] pyridine-5-carboxylate.

To a solution of 2.3 g. (0.1 mole) of sodium in 250 ml. of ethanol, there was added 25.4 g. (0.1 mole) of ethyl 4-chloro-1-ethyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate and the reaction mixture was allowed to remain at room temperature for 12 hours. The precipitated sodium chloride was removed by filtration, and the filtrate was concentrated to dryness under reduced pressure. The product weighed 24.8 g. (94%), and after recrystallization from ligroin $(90\text{-}100^\circ)$, melted at $113\text{-}115^\circ$.

This compound was also obtained by the following procedure: To a well-stirred solution of 259 g. (1.1 moles) of ethyl 1-ethyl-4-hydroxy-1*H*-pyrazolo[3,4-*b*] pyridine-5-carboxylate in 1700 ml. of dimethylformamide there was added 400 g. of well-pulverized potassium carbonate and 300 g. of ethyl iodide. The reaction mixture was stirred at 65° for 7 hours and then filtered, while hot, to remove the inorganic material. The filtrate was allowed to cool overnight and the ethyl 4-ethoxy-1-ethyl-1*H*-pyrazolo-[3,4-*b*] pyridine-5-carboxylate, which crystallized from the solution, was filtered. This first-crop material weighed 165 g.; a second crop of 80 g. was obtained by concentration of the mother liquor. The product, which weighed 245 g. (85%), melted at 112-

TABLE I

Diethyl 5-Pyrazolylaminomethylenemalonates

	N(CI)	12.44	11.77	14.74	14.41	15.64	14.42	13.46	14.80	12.74	13.67	13.26	16.29	13.84
	Found, % H	6.01	29.9	6.94	7.13	6.36	7.17	7.40	6.91	5.66	7.53	7.89	7.43	7.48
	ပ	62.85	63.97	55.42	56.57	54.05	57.13	58.35	55.54	62.43	58.09	59.17	58.00	58.21
	% N(Cl) (b)	12.24	11.77	14.93	14.23	15.72	14.23	13.58	14.93	12.76	13.58	12.99	15.99	13.58
	Calcd., % H	6.16	6.48	6.80	7.16	6.41	7.16	7.49	6.80	5.81	7.49	62.7	7.47	7.49
	၁	62.97	63.83	55.50	56.93	53.92	56.93	58.24	55.50	61.99	58.24	59.43	58.26	58.24
R ₃	Empirical Formula	$C_{18}H_{21}N_3O_4$	C19H23N3O4	$C_{13}H_{19}N_30_4$	$C_{14}H_{21}N_3O_4$	$C_{12}H_{17}N_3O_4$	$C_{14}H_{21}N_3O_4$	$C_{15}H_{23}N_{3}O_{4}$	$C_{13}H_{19}N_3O_4$	$C_{17}H_{19}N_{3}O_{4}$	$C_{15}H_{23}N_3O_4$	$C_{16}H_{25}N_30_4$	C17H26N4O4	$C_{15}H_{23}N_{3}O_{4}$
C=CH - NH -	B.p.			154-160°/0.1 mm	152-153°/0.05 mm	160-162°/0.1 mm					150-154°/0.01 mm	180-183°/0.1 mm		172-174°/0.8 mm
,000 ⁵ H ² 0	Recryst. Solvent (a)	ပ	r	Н	I	Н	Н	Н	ш	L			H	Н
	M.p.	65-67°	86-87°	55-57°	°02-69	4041°	72-73°	73-74°	91°	95-96°	. 10		°66-86	45.47°
	Yield %	82	92	84	2.2	83	88	06	28	96	73	73	82	89
	Procedure	¥	¥	¥	A	A	Α	A	Α	¥	Α	Y	V	A
	R_3	Ħ	СН3	H	CH_3	н	Н	CH_3	CH_3	H	H	CH3	Н	СН3
	$ m R_1$	$\langle \overline{\rangle} \rangle$ CH ₂	⟨⟩-CH₂	CH ₃ -CH ₂	CH ₃ -CH ₂	CH ₃	$(CH_3)_2CH$	$(CH_3)_2CH$	СН3		CH ₃ -CH ₂ -CH ₂ -CH ₂	CH ₃ -CH ₂ -CH ₂ -CH ₂	CH_3-N S	$\mathrm{CH_{3}\text{-}CH_{2}\text{-}CH_{2}}$

(a) Recrystallization solvents used in Tables I-VII: A = acetonitrile; Ac = acetic acid; At = acetone; B = benzene; C = cyclohexane; E = ether; Ea = ethyl acetate; Et = ethyl alcohol; H = n-hexane; L = ligroin (90-100°); M = methyl alcohol; P = petroleum ether (60-70°). (b) (Cl) Chlorine values are given in place of nitrogen for all compounds containing chlorine in Tables III-VII.

TABLE II

4-Hydroxy-1H-pyrazolo[3,4-b]pyridine-5-carboxylic Acid Derivatives $\bigcap_{\substack{N \\ | i| \\ |i| \\ |i|}} N^{N}$

					7. S. J. S.		R. 3.							
${f R}_1$	R_3	Rs	pro- cedure	Yield %	o M.p.	recryst.	B.p.	Empirical Formula	ပ	Calcd., % H	% N(CI)	ပ	Found, % H	% N(CI)
СН3	H	OC ₂ H ₅	В	22	141-143°	L		$C_{10}H_{11}N_3O_3$	54.28	5.01	18.99	54.62	5.05	18.90
CH ₃ -CH ₂	Н	$0C_2H_5$	В	83	87-89°	Γ		$C_{11}H_{13}N_3O_3$	56.16	5.57	17.86	56.57	5.25	17.60
CH ₃ -CH ₂	Н	НО	၁	92	201.202°	G		$C_9H_9N_3O_3$	52.19	4.38	20.28	52.16	4.35	19.90
CH ₃ -CH ₂	CH_3	0C ₂ H ₅	В	22	93-94°	T	125-129°/0.05 mm	$C_{12}H_{15}N_3O_3$	57.83	90.9	16.86	57.78	6.04	16.94
CH ₃ -CH ₂	CH_3	НО	၁	26	$212-213^{\circ}$	Ĕ		$C_{10}H_{11}N_3O_3$	54.28	5.01	18.99	54.37	4.97	18.85
CH ₃ -CH ₂	CH_3	0-CH ₂ -CH ₂ -CH ₃	D	92	64-65°	Н		$C_{14}H_{19}N_3O_3$	60.63	6.90	15.15	60.73	6.75	15.46
(CH ₃) ₂ CH	Н	$0C_2H_5$	В	82	$103-105^{\circ}$	Г	122-125°/0.1 mm	$C_{12}H_{15}N_3O_3$	57.83	90.9	16.86	57.57	5.83	17.05
(CH ₃) ₂ CH	CH_3	$0C_2H_5$	В	20	114.116°	Н	130-135°/0.1 mm	$C_{13}H_{17}N_3O_3$	59.29	6.51	15.96	59.41	6.49	16.05
(CH ₃) ₂ CH	CH_3	НО	C	96	$202-203^{\circ}$	Eŧ		$C_{11}H_{13}N_3O_3$	56.16	5.57	17.86	55.99	5.58	18.02
$\mathrm{CH_{3}\text{-}CH_{2}\text{-}CH_{2}}$	CH_3	$0C_2H_5$	В	06			$127-135^{\circ}/0.05 \text{ mm}$	$C_{13}H_{17}N_{3}O_{3}$	59.29	6.51	15.96	59.53	6.62	16.11
$\mathrm{CH_{3}\text{-}CH_{2}\text{-}CH_{2}}$	CH_3	НО	С	82	$200-201^{\circ}$	G		$C_{11}H_{13}N_3O_3$	56.16	5.57	17.86	55.94	5.33	18.09
CH ₃ -CH ₂ -CH ₂		$0C_2H_5$	В	29	121-123°	Г		$C_{18}H_{19}N_3O_3$	66.45	5.88	12.91	66.51	2.87	12.91
$\mathrm{CH_3\text{-}CH_2\text{-}CH_2\text{-}CH_2}$	H	$0C_2H_5$	В	92	47.49°	H	138-140°/0.1 mm	$C_{13}H_{17}N_3O_3$	59.29	6.51	15.96	59.3	6.52	16.22
$\mathrm{CH_{3}\text{-}CH_{2}\text{-}CH_{2}\text{-}CH_{2}}$	CH_3	$0C_2H_5$	В	92			163-165°/0.05 mm	$C_{14}H_{19}N_3O_3$	60.63	6.90	15.15	60.82	7.03	15.25
	н	$0C_2H_5$	æ	80	152-154°	1		$C_{15}H_{13}N_3O_3$	63.59	4.62	14.83	63.48	4.61	14.97
CH ₂	н	OC2Hs	В	82	117-119°	Γ		$C_{16}H_{15}N_{3}O_{3}$	64.63	5.08	14.13	64.53	5.25	14.23
CH ₂	н	ЮН	၁	92	197-198°	Σ		$C_{14}H_{11}N_3O_3$	62.45	4.11	15.61	62.52	4.33	15.24
CH2	СН3	0C ₂ H ₅	æ	62	103-104°	-1	196-199°/0.2 mm	$C_{17}H_{17}N_{3}O_{3}$	65.50	5.50	13.49	65.90	5.28	13.48
снз	Н	НО	C	86	213°	Eŧ		$C_8H_7N_3O_3$	49.74	3.65	21.75	49.49	3.66	21.91
CH ₃ -CH ₂	Н	OCH ₂ -CH ₂ -CH ₃	D	72	70-71°	4		$C_{13}H_{17}N_3O_3$	59.29	6.51	15.96	59.42	6:29	16.21
CH ₃ -CH ₂	H	0 -(CH ₂) $_8$ CH $_3$	D	83	71-73°	Н		$C_{18}H_{27}N_3O_3$	64.84	8.16	12.6	64.57	8.21	12.83

TABLE III

4-Chloro-1*H*-pyrazolo[3,4-*b*] pyridine-5-carboxylic Acid Derivatives $\bigcap_{N} \bigcap_{N} \bigcap_{N}$

						5. ∩ 2. ∩ =0								
R_1	$ m R_3$	$ m R_{5}$	pro- cedure	Yield %	M.p.	recryst.	В.р.	Empirical Formula	၁	Calcd., % H	, N(Cl)	C	Found, % H	(NCI)
CH ₃ -CH ₂	Н	$0C_2H_5$	ы	94	62-63°	Н		$C_{11}H_{12}CIN_3O_2$	52.07	4.7	(13.97)	52.05	4.84	(13.94)
CH ₃ -CH ₂	CH_3	$0C_2H_5$	ഥ	93	°08-87	Н		$C_{12}H_{14}GIN_3O_2$	53.83	5.27	(13.24)	54.04	5.32	(13.21)
(CH ₃) ₂ CH	CH3	$0C_2H_5$	ы	80	$84-85^{\circ}$	Η		$C_{13}H_{16}GIN_{3}O_{2}$	55.42	5.72	(12.58)	55.37	5.73	(12.67)
CH ₃ -CH ₂ -CH ₂	CH3	$0C_2H_5$	ы	82	52.54°	Н		$C_{13}H_{16}GIN_{3}O_{2}$	55.42	5.72	(12.58)	55.52	5.81	(12.71)
$\mathrm{CH_{3}\text{-}CH_{2}\text{-}CH_{2}}$		$0C_2H_5$	3	93	°68-78	H		$\mathrm{C}_{18}\mathrm{H}_{18}\mathrm{ClN}_3\mathrm{O}_2$	62.87	5.27	(10.31)	62.90	5.23	(10.15)
CH3-CH2-CH2-CH2	H	$0C_2H_5$	Э	80			128°/0.05 mm	$\mathrm{C}_{13}\mathrm{H}_{16}\mathrm{ClN}_{3}\mathrm{O}_{2}$	55.42	5.72	(12.58)	55.31	5.59	(12.49)
CH ₃ -CH ₂ -CH ₂ -CH ₂	CH_3	$0C_2H_5$	ഥ	82			$192^{\circ}/0.2~\mathrm{mm}$	$C_{14}H_{18}GN_{3}O_{2}$	56.86	6.13	(11.99)	56.60	6.22	(12.24)
CH ₃ -CH ₂ -CH ₂ -CH ₂	CH_3	НО	C	26	$178\text{-}180^\circ$	A		$C_{12}H_{14}CIN_3O_2$	53.83	5.27	(13.24)	54.08	5.27	(13.41)
	Н	$0C_2H_5$	Œ	95	$100-102^{\circ}$	Ħ		$\mathrm{C}_{15}\mathrm{H}_{12}\mathrm{GN}_{3}\mathrm{O}_{2}$	59.71	4.00	(11.75)	59.55	4.09	(11.99)
$\langle \begin{array}{c} \\ \\ \end{array} \rangle$ -CH ₂	Н	$0C_2H_5$	ഥ	94	82-84°	C		$C_{16}H_{14}CIN_3O_2$	28.09	4.47	(11.23)	89.09	4.40	(11.31)
CH ₂	СН3	0C2H5	ਜ਼	95	94-96°	н		$C_{17}H_{16}GN_{3}O_{2}$	61.91	4.89	(10.75)	62.4	4.91	(10.42)
CH ₃	Н	$0C_2H_5$	স	20	$84-86^{\circ}$	Н		$C_{10}H_{10}CIN_3O_2$	50.11	4.20	(14.78)	50.06	4.23	(15.05)
CH3-CH2	CH_3	Ö	Ь	85	68-70°	C		$\mathrm{C}_{10}\mathrm{H_9Cl_2N_3O}$	46.53	3.51	(27.47)	46.91	3.53	(27.13)
(CH ₃) ₂ CH	CH_3	Ü	Ь	06	$81-83^{\circ}$	Н		$C_{11}H_{11}\Box_2N_30$	48.55	4.07	(26.06)	48.14	3.81	(25.98)

CABLE IV

4-Alkoxy-1*H*-pyrazolo[3,4-*b*] pyridine-5-carboxylic Acid Derivatives $\mathbb{R}_{\mathbb{I}}$

			R _S	2-2-1 0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		£.							
\mathtt{R}_1	$ m R_3$	$ m R_4$	Rs	, <u>a</u>	OK4 Yield %	M.p.	recryst. solvent	Empirical Formula	Calcd., % C H N	% N(CI)	C	Found, % H N	% N(CI)
CH ₃	Η	CH ₃ -CH ₂	OC ₂ H ₅	ī	91	128-129°	Г	$C_{12}H_{15}N_3O_3$	57.81 6.06	16.86	57.96	5.98	16.83
CH3-CH3	H	CH ₃ -CH ₂	0C ₂ H ₅	Œ	94	$113-115^{\circ}$	ı	$C_{13}H_{17}N_3O_3$	59.31 6.51	15.96	59.18	6.48	16.08
CH ₃ -CH ₂	Ξ	CH ₃ -CH ₂	Н0	၁	93	198-199°	Et	$C_{11}H_{13}N_3O_3$	56.16 5.57	17.86	56.42	2.76	18.01
CH ₃ -CH ₂	H	CH_3 (CH ₂) ₈	OC ₂ H ₅	ī	98	°07	Д	$C_{20}H_{31}N_3O_3$	66.46 8.64	11.62	66.65	8.61	11.76
CH ₃ -CH ₂	H	12-CH2	OC ₂ H ₅	ſ±	82	70-71°	Г	$C_{15}H_{21}N_3O_3$	61.86 7.26	14.42	61.59	7.07	14.21
CH ₃ -CH ₂	H		0-(CH ₂) ₃ -CH ₃	D	62	65-66°	Г	$C_{17}H_{25}N_{3}O_{3}$	63.94 7.89	13.16	63.75	89.2	13.25
си _з -сн ₂	Н	$CH_3 + (CH_2)_3$	Н0	ပ	62	148°	B	$C_{13}H_{17}N_3O_3$	59.31 6.51	15.96	59.06	6.41	16.36
CH ₃ -CH ₂	Н	CH_3 + $(CH_2)_8$	0-(CH ₂)8-CH ₃	D	88	53-55°	Н	$C_{27}H_{45}N_{3}O_{3}$	70.53 9.87	9.14	70.61	9.78	9.38
CH ₃ -CH ₂	H	$\left\langle \begin{array}{c} \\ \end{array} \right\rangle$ CH ₂	OC2Hs	Œ.	91	128°	IJ	$C_{18}H_{19}N_3O_3$	66.45 5.88	12.91	66.38	5.95	13.19
CH ₃ -CH ₂	Н	CH ₃ -CH ₂	CI	۵.	96	$122-124^{\circ}$	၁	$C_{11}H_{12}CIN_3O_2$	52.09 4.76	(13.98)	52.21	4.84	4.84 (14.03)
CH ₃ -CH ₂	Н	CH ₃ -CH ₂	$O(CH_2)_2N(C_2H_5)_2.2HCI$	ò	22	$129 \cdot 130^{\circ}$	Ea/Et	$C_{17}H_{28}Cl_{2}N_{4}O_{3}$	50.12 6.92	(17.41)	50.28	7.07	7.07 (17.18)
CH ₃ -CH ₂	Н	CH ₃	0CH ₃	Q	95	91.93°	M	$C_{11}H_{13}N_3O_3$	56.16 5.57	17.86	56.24	5.37	17.85
CH ₃ -CH ₂	CH_3		OC ₂ H ₅ ·HCl	Œ	09	98° dec.	Ea	$C_{14}H_{20}CIN_3O_2$	53.59 6.24	(11.30)	53.77	6.27	(11.59)
CH ₃ -CH ₂	CH ₃		НО	၁	92	$201-202^{\circ}$	Ē	$C_{12}H_{15}N_3O_3$	57.81 6.06	16.86	58.06	6.08	16.70
CH ₃ -CH ₂	CH ₃	CH ₃ CH ₃	НО	၁	94	$189 \cdot 190^{\circ}$	Et	$C_{11}H_{13}N_3O_3$	56.16 5.57	17.86	56.18	5.50	18.06
CH ₃ -CH ₂	CH_3	CH₃ CH≡C-CH₂	OC ₂ H ₅	<u></u>	20	112°	П	$C_{15}H_{17}N_3O_3$	62.70 5.97	14.62	62.60	6.01	14.70
CH ₃ -CH ₂	H	$CH_2 = CH \cdot CH_2$	0C ₂ H ₅	[±	71	$85-87^{\circ}$	4	$C_{14}H_{17}N_3O_3$	61.06 6.22	15.26	61.08	5.87	14.98
(CH ₃) ₂ CH	CH_3	_	НО	ပ	06	154-156°	Г	$C_{13}H_{17}N_3O_3$	59.31 6.51	15.96	59.41	6.42	15.81
(CH ₃) ₂ CH	Н		0C ₂ H ₅	<u>[</u>	84	$104-105^{\circ}$	1	$C_{14}H_{19}N_3O_3$	60.63 6.90	15.15	92.09	6.81	15.3
CH ₃ -CH ₂	CH_3	$(CH_3)_2CH$	OC ₂ H ₅ ·HCl	[24	20	108.109°	Ea	$\mathrm{C}_{15}\mathrm{H}_{22}\mathrm{CIN}_3\mathrm{O}_3$	54.95 6.77	(10.81)	54.83	28.9	6.87 (10.78)
CH3-CH2-CH2-CH2			$0C_2H_5$	<u>ı</u>	98	74-76°	Γ	$C_{15}H_{21}N_3O_3$	61.84 7.26	14.42	61.65	7.19	14.53
	H	снз	осн _з	Q	83	135-136°	1	$C_{15}H_{13}N_3O_3$	64.62 5.08	14.13	63.91	4.56	14.66
$\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$ CH ₂	H	CH ₃ -CH ₂	$0C_2H_5$	ĬΞ	87	94-96°	Г	$C_{18}H_{19}N_3O_3$	66.45 5.88	12.91	66.32		5.93 13.05

_	
ਢ	
e	
=	
=	
tinue	
္ပ	
0	
$^{\circ}$	
$\overline{}$	
$\overline{}$	
>	
<u>`</u>	
=	
=	
=	
=	
=	
=	
_	

				TABLE 1V (Continued)	Z) N	ıtinued)							
R_1	R_3	R4	$ m R_{S}$	pro- Yield cedure %	Yield %	M.p.	recryst. solvent	Empirical Formula	Calcd., % C H N(Cl)	% N(Cl)	၁	Found, % H N(Cl)	N(G)
CH ₂	н	CH ₃ -CH ₂	НО	O	93	93 181-182°	Et	C16H15N3O3	64.63 5.08 14.13 64.68 5.02 14.09	14.13	64.68	5.02	14.09
CH ₂	CH3	СН3 СН3-СН2	$0C_2H_5$	ű4	62	°87-77	H	$C_{19}H_{21}N_{3}O_{3}$	67.25 6.23 12.38	12.38	66.86 6.14	6.14	12.61
$\mathrm{CH_{3}\text{-}CH_{2}}$	Н	СН3	CI	۵.	89	141-143°	၁	C ₁₀ H ₁₀ ClN ₃ O ₂	50.12 4.20 (14.79) 50.45 4.16 (14.91)	(14.79)	50.45	4.16 (14.91)
	Ħ	СН3	CI	Ь	96	169-170°	၁	$C_{14}H_{10}CIN_3O_2$	58.44 3.50 (12.32) 58.63 3.47 (12.50)	(12.32)	58.63	3.47 (12.50)
CH3-CH2	CH_3	СН3	0CH ₃	D	94	51-53°	H	C12H15N3O3	57.81 6.06 16.86 57.97 6.01 17.13	16.86	57.97	6.01	17.13
CH_3 - CH_2	H	н сн3	НО	၁	82	216.217°	Εŧ	$C_{10}H_{11}N_3O_3$	54.29 5.01 19.00	19.00	54.18 5.03 18.93	5.03	18.93
CH ₃ -CH ₂ -CH ₂ H	H	CH ₃ -CH ₂	НО	၁	26	162°	Et	$C_{13}H_{17}N_3O_3$	59.31 6.51 15.96	15.96	59.19 6.46 16.25	6.46	16.25

TABLE V

4-Hydrazino-1H-pyrazolo[3,4-b]pyridine-5-carboxylic Acid Derivatives

% N(CI)	(13.02)	(11.43)	26.70	27.79	(10.88)	(9.59)
ound,	4.99	5.71	5.69	5.97	6.09	6.47
ပ	44.45	50.14	55.38	52.92	51.62	55.99
Calcd., % Found, % C H N(CI)	(13.05)	50.00 5.81 (11.37) 50.14 5.71 (11.43)	26.81	53.01 6.06 28.10 52.92 5.97 27.79	51.63 6.18 (10.88) 51.62 6.09 (10.88)	55.81 6.61 (9.69) 55.99 6.47 (9.59)
lalcd., H	5.19	5.81	5.78	90.9	6.18	6.61
ິ່ວ			55.16	53.01		55.81
Empirical Formula	$C_{10}H_{14}CIN_5O_2$	$C_{13}H_{18}CIN_5O_2$	$C_{12}H_{15}N_5O_2$	$C_{11}H_{15}N_5O_2$	Ea/Et C14H20CIN5O2	Ea/Et C ₁₇ H ₂₄ ClN ₅ O ₂
recryst. solvent	Εŧ	Eŧ	Εt	r/B	Ea/Et	Ea/Et
M.p.	208-209° Et	$212-213^{\circ}$	225°	139-140°	193.195° 210.220°	85 198-199°
Yield %	06	98	94	84	96	85
pro- cedure	9	Ι	C	G	Ι	I
Rs	$0C_2H_5$	$0C_2H_5$	НО	$0C_2H_5$	OC2H5	$0C_2H_5$
R4	NH-NH ₂ ·HCl	NH-N=C(CH ₃) ₂ ·HCl	NH-N=C(CH ₃) ₂	NH-NH ₂	NH-N=C(CH ₃) ₂ ·HCl	$NH-N \neq S$ $\rightarrow HCI$
R ₃ R ₄	H NH-NH ₂ ·HCl	H NH-N=C(CH ₃) ₂ ·HCi	H NH-N=C(CH ₃) ₂	H NH-NH ₂	H NH-N=C(CH ₃) ₂ ·HCl	H NH-N≤S >·HCI
	CH ₃ H NH-NH ₂ ·HCl	н	CH_3 - CH_2 H NH-N= $C(CH_3)_2$	CH ₃ -CH ₂ H NH-NH ₂		CH_3 - CH_2 H NH - $N = \left\langle S \right\rangle$ - HCI

TABLE V (Continued)

R_1	R_3	R4	$ m R_{S}$	pro- cedure	Yield %	M.p.	recryst. solvent	Empirical Formula	Calcd.,% C H N	% N(CI)	C	Found, % H	N(CI)
$\mathrm{CH_3-CH_2}$	Н	$NH-N=C[(CH_2)_3CH_3]_2\cdot HCI$	$0C_2H_5$	Ι	95	156°	L/B	C20H32CIN5O2	58.59 7.86	(8.65)	58.19	7.86	7.86 (8.68)
CH ₃ -CH ₂	Ξ	NH-NH ₂	$0(CH_2)_3CH_3$	Ç	83	86-88°	H	$C_{13}H_{19}N_5O_2$	56.30 6.90	25.25	56.44	6.91	25.13
CH ₃ -CH ₂	H	$NH-N=C(CH_3)_2 \cdot HCI$	$0(CH_2)_3CH_3$	-	62	149°	В	C16H24CIN5O2	54.31 10.02 (6.83)	(6.83)	53.89		10.25 (6.72)
CH ₃ -CH ₂	Н	NH-N=C(CH ₂ OH) ₂	$0C_2H_5$	-	92	175-177°	ă	C14H19N5O4	52.33 5.96	21.79	52.31	5.99	21.94
CH ₃ -CH ₂	Н	NH-N=C(CH ₃)CH ₂ -CH(0CH ₃) ₂	$0C_2H_5$		92	22-92	Ы	$C_{17}H_{25}N_{5}O_{4}$	56.18 6.93	19.27	56.28	6.94	19.53
CH ₃ -CH ₂	Ħ	NH-NH	$0C_2H_5$	H	82	176-177°	Et	$C_{17}H_{19}N_{5}O_{2}$	62.76 5.88	21.53	62.76	5.87	21.35
CH3-CH2	Ħ	$NH-N=HC$ NO_2	$0C_2H_5$	G	95	228-229°	E B	$C_{16}H_{16}N_6O_5$	51.61 4.33	22.57	51.23	4.17	22.37
CH3-CH2	Ξ	NH-NH-CO-CH ₃	$0C_2H_5$	×	82	226-227°	Et	C13H17N5O3	53.59 5.88	24.04	53.56	5.89	24.11
CH3-CH2	Н	NH-N(CO-CH ₃) ₂	$0C_2H_5$	L	10	$113-114^{\circ}$	H	C15H19N5O4	54.04 5.73	21.01	53.84	5.89	20.95
CH ₃ -CH ₂	CH_3	NH-NH ₂	NH-NH ₂	G	89	192-193°	Ea/Et	$C_{10}H_{15}N_{7}O$	48.19 6.06	39.34	48.18	6.04	38.96
$(CH_3)_2CH$	H	NH-NH ₂	$0C_2H_5$	g	85	$136\text{-}138^{\circ}$	L/B	$C_{12}H_{17}N_5O_2$	54.75 6.51	26.61	54.70	29.9	26.62
(CH ₃) ₂ CH	H	NH-N=C(CH ₃) ₂ ·HCl	$0C_2H_5$	I	83	$215\text{-}216^{\mathrm{o}}$	A	$C_{15}H_{22}CIN_5O_2$	53.01 6.52	(10.43)	53.04	6.48	(10.42)
(CH ₃) ₂ CH	CH_3	NH-NH ₂	$0C_2H_5$	9	26	163°	Г	$C_{13}H_{19}N_{5}O_{2}$	56.30 6.90	25.25	56.10	7.05	25.27
$(CH_3)_2CH$	CH_3	NH-N=C(CH ₃) ₂	$0C_2H_5$	-	92	091	Т	$C_{16}H_{23}N_{5}O_{2}$	60.54 7.30	22.07	60.51	7.21	22.29
CH ₂	Ħ	NH-NH2	$0C_2H_5$	ರ	92	159-161°	Et	$C_{16}H_{17}N_{5}O_{2}$	61.72 5.50	22.49	61.67	5.53	22.52
CH ₂	н	NH-N=C(CH ₃) ₂ ·HCl	$6C_2H_5$	-	74	178-180°	At	C ₁₉ H ₂₂ ClN ₅ O ₂	58.83 5.45	18.05	58.95	5.74	17.99
CH ₂	H	NH-N=CH () NO2	0C ₂ H ₅	-	91	205-207°	E	$C_{21}H_{18}N_60_5$	58.05 4.17	19.34	58.13	4.16	19.18
CH ₃ -CH ₂	СН3	NH-NH ₂	$0C_2H_5$	G	84	156-158°	1	$C_{12}H_{17}N_50_2$	54.75 6.51	26.61	54.38	6.57	26.86
CH3-CH2	СН3	NH-N=C(CH ₃) ₂ ·HCl	0C ₂ H _s	-	74	197-199° 204-205°	Ea	$C_{15}H_{22}CIN_5O_2$	53.01 6.52	(10.43)	53.19	6.43	6.43 (10.16)

TABLE VI 4-Amino-1*H*-pyrazolo[3,4-6]pyridine-5-carboxylic Acid Derivatives

»(CI)	(11.47)	22.54	23.93	22.39	27.48	(10.63)	(10.08)	(11.12)	(11.34)	20.59	19.49	(10.69)	20.58	19.59	19.61	(11.08)	17.55	17.50	16.55	(16.98)	(17.22)
Found, % H	6.56	6.46	5.86	6.52	4.91	7.15	7.58	99.9	6.72	09.9	7.64		7.32				8.12	6.23	6.64	7.62	7.39
ر د	53.86	58.31	56.63	58.00	52.46	55.24	56.14	53.92	53.76	61.05	62.17	56.40	60.85	61.88	62.10	55.10	64.22	66.30	67.29	51.58	49.97
» N(CI)	(11.33)	22.56	23.92	22.56	27.17	(10.84)	(10.40)	(11.33)	(11.33)	20.42	19.30	(10.40)	20.27	19.30	19.30	(10.84)	17.60	17.27	16.56	(16.87)	(17.45)
Calcd., % H	92.9	6.49	6.02	6.49	4.88	60.7	7.39	92.9	92.9	6.61	2.63	7.39	7.29	7.63	7.63	5.09	8.23	6.21	6.55	7.43	7.19
၁	53.75	58.04	56.40	58.04	52.42	55.12	56.38	53.75	53.75	61.29	62.05	56.38	60.84	62.05	62.05	55.12	64.14	66.64	67.43	51.43	50.25
Empirical Formula	$C_{14}H_{21}CIN_4\theta_2$	C12H16N4O2	C11H14N4O2	$C_{12}H_{16}N_4O_2$	C9H10N4O2	$C_{15}H_{23}ClN_4O_2$	$C_{16}H_{25}ClN_4O_2$	$C_{14}H_{21}CIN_4O_2$	$C_{14}H_{21}ClN_40_2$	$C_{14}H_{18}N_{4}O_{2}$	$C_{15}H_{22}N_4O_2$	$C_{16}H_{25}CIN_4O_2$	$C_{14}H_{20}N_{4}O_{2}$	$C_{15}H_{22}N_4O_2$	$C_{15}H_{22}N_4O_2$	$C_{15}H_{23}ClN_4O_2$	$C_{17}H_{26}N_{4}O_{2}$	$C_{18}H_{20}N_{4}O_{2}$	$C_{19}H_{22}N_{4}O_{2}$	$C_{18}H_{31}Cl_2N_5O_2$	$C_{17}H_{29}Cl_2N_5O_2$
recryst. solvent	Ea/E	Ŧ	Et	Ĕ	Ħ	Ea	Ea/E	Ea/Et	Ea/Et	Γ	Н	Ea	Et	Ŧ	Η	Ea	H	н	Εt	۵.	Ъ
M.p.	180-181°					104-105°	102°	174-175°	191-192°			$152 - 153^{\circ}$				171-172°				195-196°	157-158°
salt	hydro- chloride					hydro- chloride	hydro- chloride	hydro- chloride	hydro- chloride			hydro- chloride				hydro- chloride				dihydro- chloride	dihydro- chloride
M.p.		217-218°	$181\text{-}182^{\circ}$	177-179°	$248-249^{\circ}$					90-92°	82-83°		$200\text{-}201^{\circ}$	117-119°	92.93°		57-59°	128-129°	°66-76	63-65°	55-57°
Yield %	52	95	2.2	96	96	54	75	88	94	91	92	95	68	23	64	20	26	80	81	20	94
pro- cedure	z	၁	z	z	၁	z	z	z	Z	z	Z	z	၁	Z	z	z	Z	z	z	z	z
Rs	$0C_2H_5$	НО	$0C_2H_5$	$0C_2H_5$. HO	$0C_2H_5$	$0C_2H_5$	$0C_2H_5$	$0C_2H_5$	$0C_2H_5$	0C,H.	$0C_2H_5$	НО	$0C_2H_S$	$0C_2H_5$	$0C_2H_S$	$0C_2H_S$	$0C_2H_5$	$0C_2H_5$	$0C_2H_5$	$0C_2H_5$
R.	NH-CH ₂ -CH ₂ -CH ₃	NH-CH,-CH,-CH,	NH,	TH.	NH,	N(C ₂ H ₅) ₂			NH-CH(CH ₃) ₂	NH-CHCH=CH-	NH-CH, -CH, -CH,				NH-CH ₂ -CH(CH ₃) ₂	NH-CH(CH ₃)-CH ₂ -CH ₃	NH-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃	NH - CH_2	NH-CH ₂ -CH ₂ -	NH(CH ₂) ₃ -N(C ₂ H ₅) ₂	NH(CH ₂)2-N(C ₂ H ₅)2
R_3	Ξ	H	: Ξ	CH.	; ;	: Ξ	CH3	Н	Ξ	Ξ	: =	CH3	CH,	΄ Ξ	Η	Н	Ξ	=	Ξ	H	H
				CH3-CH3		CH ₃ -CH ₂	CH,-CH,	CH ₃ -CH ₂	CH ₃ -CH ₂	CH, CH,	CH ₂ -CH ₂	CH3-CH3	CH ₂ -CH,	CH ₃ -CH ₃	CH ₃ -CH ₂	сн,-сн,	CH ₃ -CH ₂	CH ₃ -CH ₂	сн _з -сн ₂	CH ₃ -CH ₂	CH ₃ -CH ₂

(Continued)
-
ABLE

R_1	\mathbb{R}_3	$ m R_4$	Rs	pro- cedure	Yield %	M.p.	salt	M.p.	recryst. solvent	Empirical Formula	o o	Caled., 9 H	% N(Cl)	C F	Found, 9 H	% N(CI)
CH3-CH2-CH2	CH3	NH-CH ₂ -CH ₂ -CH ₃	OC2H5	Z	75		hydro- chloride	118-121°	Ea	C ₁₇ H ₂₇ ClN ₄ O ₂	57.53) 29.2	(66.6)	57.28) 19:2	(10.13)
CH ₃ -CH ₂ -CH ₂		NH-CH ₂ -CH ₂ -CH ₃	$0C_2H_5$	z	83		½ oxalate	107-109°	H	C23H29N4O4	64.93	28.9	13.17	64.55	0.70	13.51
CH ₃ -CH ₂ -CH ₂	Η	NH-CH ₂ -CH ₂ -CH ₃	$0C_2H_5$	z	8		hydro- chloride	174-175°	Ea	$C_{17}H_{27}CIN_4O_2$	57.53) 29:2	(66.6	57.74	7.53 ((10.34)
CH ₃ -CH ₂ -CH ₂ -CH ₂ CH ₃	СН3	NH-CH ₂ -CH ₂ -CH ₃	$0C_2H_S$	Z	53		hydro- chloride	$128-130^{\circ}$	Ea/H	$C_{18}H_{29}ClN_40_2$	58.60	7.92 ((9.61)	58.35	96.7	9.76)
	Ξ	NH-CH ₂ -CH ₂ -CH ₃	$0C_2H_5$	Z	92	°86-96			၁	$C_{19}H_{22}N_4O_2$	67.43	6.55	16.56	67.48	6.46	16.86
CH ₃ -CH ₂	Ξ	$\left[\begin{array}{c} \infty \\ \end{array}\right]$	$0C_2H_5$	z	95	105-106°	hydro- chloride	190-191°	၁	$C_{15}H_{21}CIN_4O_2$	55.49	6.51 ((10.91)	55.73	6.48	(10.93)
CH ₃ -CH ₂	СН3	$\begin{bmatrix} \mathbf{z} \\ \mathbf{z} \end{bmatrix}$	$0C_2H_5$	z	94		hydro- chloride	199-200°	æ	$C_{16}H_{23}CIN_4O_2$	56.71	6.84 ((10.46)	56.96	6.78	(10.51)
CH ₃ -CH ₂	×	$\left(\begin{array}{c} \\ \\ \end{array}\right)$	$0C_2H_5$	Z	91		hydro- chloride	174-175°	Ea/Et	$C_{16}H_{23}CIN_40_2$	56.71	6.84 ((10.46)	56.94	6.75	(10.57)
сн3-сн2	CH_3	$\left(\begin{array}{c} \infty \\ \end{array}\right)$	$0C_2H_5$	Z	98		hydro- chloride	152-153°	Ea	$C_{17}H_{25}GIN_{4}O_{2}$	57.86	7.14 ((10.04)	57.91	7.32	(10.06)
CH ₃ -CH ₂	Ξ	N S N.CH ₃	$0C_2H_{\rm S}$	Z	85		dihydro- chloride	232-235°	Et	$C_{16}H_{25}Cl_2N_5O_2$	49.23	6.45 ((18.16)	49.01	6.38	(17.83)
CH3-CH2	сН3	N S N-CH ₃	0C2Hs	Z	88		dihydro- chloride	174.176° 206°	Et/Ea	C17H27Cl2N5O2	50.49	6.73 ((17.53)	50.27	6.63	(17.41)
CH ₃ -CH ₂	н	N S N-CH ₂ -CH ₂ -OH	$0C_2H_5$	Z	98	103-104°			ပ	$C_{17}H_{25}N_{5}O_{3}$	58.77	7.25	20.16	58.67	7.27	19.99
CH ₃ -CH ₂	Ħ	CH_3 I_1 I_2 I_3 I_3 I_4 I_4 I_5	0C2Hs	22	92	61-63°			Ħ	$C_{16}H_{19}N_{5}O_{2}$	61.33	6.11	22.35	61.26	60.9	22.50
CH ₃ -CH ₂	H	CH_3 \longrightarrow CH_3 \longrightarrow CH_3	0C ₂ H ₅	æ	82	155-157°			Ð	$C_{17}H_{21}N_{5}O_{2}$	62.38	6.46	21.39	62.50	6.41	21.61
CH ₂	н	NH-CH ₂ -CH ₂ -CH ₃	$0C_2H_5$	z	64	°86-76			펿	C20H24N4O2	68.74	6.92	15.17	68.53	7.12	14.93
CH ₃ -CH ₂	=	HN	$0C_2H_5$	0	75	°26-96			Et/H2C	Et/H2O C17H18N4O2	65.79	5.85	18.05	65.74	5.57	18.5
CH ₃ -CH ₂	Ħ	$HN \longrightarrow CF_3$	0C2H5	z	29	101.5-102°	٥.		Et/H20	C18H17F3N4O2	57.13	4.53	14.81	57.35	4.47	14.90
СН3-СН2	Ξ	CH ₃	$0C_2H_5$	z	02	99-101°			Et/H2C	Et/H2O C19H22N4O2	67.44	6.55	16.56	67.56	6.30	16.01

TABLE VI (Continued)

% Found, % N(Cl) C H N(Cl)	2 15.81 60.85 5.06 16.20	1 21.36 59.36 6.88 21.48	0 19.85 63.61 4.76 19.58	4 15.99 54.44 3.66 15.51	5 18.05 65.56 5.74 17.80	4 32.29 51.06 4.60 32.57	0 (12.63) 55.40 6.02 (12.78)
Calcd., % C H N	61.00 5.12	59.52 6.91	63.82 5.00	54.86 3.74	65.79 5.85	50.76 4.64	55.62 6.10
st. Empirical nt Formula	Et/H2O C18H18N4O4 6	C13H15N4O2	C ₁₅ H ₁₄ N ₄ O ₂	$C_{16}H_{13}F_{3}N_{4}O_{2}$	C17H18N4O2	A/H ₂ O C ₁₁ H ₁₂ N ₆ O ₂ 5	$C_{13}H_{17}CIN_4O$
M.p. recryst. solvent	Et/H	Et	Ac	Ac	Εt	A/H ₂	В
salt M							
M.p.	193-196°	213-214°	237-238°	250°	212-213°	73-74°	13 4 -136°
Yield %	25	20	73	75	82	82	95
pro- cedure	z	၁	ပ	၁	၁	J	Ъ
$ m R_{S}$	0C2Hs	НО	НО	НО	но	0C2H5	CI
R.	HN COOH	NH-CH ₂ -CH ₂ -CH ₃	HN N	HN CF3	CH ₃	S.	NH-CH ₂ -CH ₂ -CH ₃
R ₃	н	=	H	H	Ξ	н	Н
	СН3-СН2	CH ₃ -CH ₂	CH ₃ -CH ₂	CH3-CH2	сн3-сн2	CH ₃ -CH ₂	CH_3 - CH_2

 $115^{\circ},$ and, after recrystallization from ligroin (90-100°), melted at 113-115°.

Procedure G. Ethyl 1-Ethyl-4-hydrazino-1H-pyrazolo[3,4-b] pyridine-5-carboxylate.

To a solution of 5.08 g. (0.02 mole) of ethyl 4-chloro-1-ethyl-1*H*-pyrazolo[3,4-*b*] pyridine-5-carboxylate in 50 ml. of benzene there was added 2.5 g. (0.05 mole) of 100% hydrazine hydrate. The reaction mixture was stirred for 4 days, and then filtered to remove the hydrazine hydrochloride. The filtrate was concentrated to dryness under reduced pressure, and, after recrystallization from a benzene-ligroin mixture (1:3), melted at $139-140^{\circ}$.

The hydrochloride was formed by adding 5 ml. of a $6.3\ N$ ethanolic hydrogen chloride solution to a cooled solution of 5 g. of ethyl 1-ethyl-4-hydrazino-1H-pyrazolo[3,4-b] pyridine-5-carboxylate in 100 ml. of absolute ethanol. The hydrochloride precipitated as a white solid immediately. The mixture was diluted with anhydrous ether and filtered. The solid was washed with anhydrous ether, air-dried overnight, and, after recrystallization from a mixture of acetonitrile and absolute ethanol, melted at $210-212^{\circ}$.

This compound was also prepared by the following procedure: To a solution of 316 g. (1.2 moles) of ethyl 4-ethoxy-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate in 4800 ml. of absolute ethanol, there was added 72 g. (1.44 moles) of hydrazine hydrate (100%) and 0.4 g. of zinc chloride. The reaction mixture was heated under reflux for 4 hours, and the hot solution was filtered. The filtrate was concentrated to dryness under reduced pressure, and, after recrystallization from a benzene-ligroin mixture (1:3), weighed 250 g. (84%), m.p. 139-140°.

Procedure H. Ethyl 1-Ethyl-4-(2-phenylhydrazino)-1*H*-pyrazolo-[3,4-6] pyridine-5-carboxylate.

A solution of 25.3 g. (0.1 mole) of ethyl 4-chloro-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate and 21.6 g. (0.2 mole) of phenylhydrazine in 200 ml. of benzene was heated under reflux for 4 hours. The reaction mixture was cooled, filtered to remove the phenylhydrazine hydrochloride, and then concentrated to dryness under reduced pressure. The residue was recrystallized from 95% ethanol to give 25.4 g. (78%) of product, m.p. 176-177°.

Procedure I. Ethyl 1-Ethyl-4-isopropylidenehydrazino-1*H*-pyrazolo-[3,4-*b*] pyridine-5-carboxylate Hydrochloride.

A solution of 8.4 g. (0.034 mole) of ethyl 1-ethyl-4-hydrazino-1H-pyrazolo[3,4-b]pyridine-5-carboxylate in 100 ml. of acetone was heated under reflux for 1 hour. To the cooled solution, there was added 10 ml. of a 6.7 N ethanolic hydrogen chloride solution, resulting in the precipitation of a white crystalline solid. The mixture was diluted with 150 ml. of anhydrous ether and filtered. The solid was washed with anhydrous ether and dried overnight at 110° at 1 mm. The product, which weighed 10.5 g. (96%), melted with decomposition at 193- 195° , resolidified at 198° , and then remelted at 210- 220° .

The free base, m.p. 92-93°, was obtained by concentrating the original reaction mixture to dryness under reduced pressure.

Procedure J. Ethyl 4-Azido-1-ethyl-1H-pyrazolo[3,4-b] pyridine-5-carboxylate.

A solution of 345 mg. (5 mmoles) of sodium nitrite was added slowly below the surface of a stirred solution of 1.47 g. (5 mmoles) of ethyl 4-hydrazino-1*H*-pyrazolo[3,4-b]pyridine-5-carboxylate, hydrochloride in 20 ml. of water at room temperature. A white solid precipitated immediately. After the reaction mixture

TABLE VII

1H-Pyrazolo[3,4-b]pyridine-5-carboxamides

	Calcd.,% Found, % C H N(CI) C H N(CI)	Ea/Et C ₁₆ H ₂₅ Cl ₂ N ₅ O ₂ 49.23 6.45 (18.16) 48.82 6.54 (18.29)	55.46 6.51 (10.91) 55.24 6.44 (10.88)	62.05 7.63 19.30 61.86 7.65 19.38 61.23 8.16 21.00 61.48 8.22 21.01	58.77 7.25 20.16 58.68 7.27 20.37	55.98 6.26 (11.01) 55.71 6.34 (11.21)	63.56 7.33 18.53 63.83 7.39 18.61	56.38 6.02 23.92 56.16 6.00 23.75	57.86 7.14 (10.04) 58.15 7.01 (10.07)	56.71 6.84 (10.46) 56.53 6.71 (10.30)
	Empirical Formula	$C_{16}H_{25}Cl_2N_5O_2$	$C_{15}H_{21}CIN_40_2$	C ₁₅ H ₂₂ N ₄ O ₂ C ₁₇ H ₂₇ N ₅ O ₂	$C_{17}H_{25}N_{5}O_{3}$	$C_{15}H_{20}CIN_5O$	$C_{16}H_{22}N_40_2$	$C_{11}H_{14}N_4O_2$	$C_{17}H_{25}CIN_40_2$	C ₁₆ H ₂₃ ClN ₄ O ₂
	recryst. solvent	Ea/Et	C	C/B	Ea	T	၁	83	Ea/Et	Ea/E
ar T	M.p.	202-205°	140-142°						153-154°	158-160°
	salt	dihydro- chloride	hydro- chloride		a)				hydro- chloride	hydro- chloride
~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~	M.p.		85-87°	122-124° 109-111°	106-108° (a)	152°	123-124°	184-185°		
	Yield %	20	74	92	83	75	83	71	82	83
	pro- cedure	ò	o	00	ð	Ò	Ò	S	ò	ò
	$ m R_4$ $ m R_5$	0C ₂ H ₅ CO-N S N-CH ₃	OC ₂ H ₅ CO-N S	OC2H5 CONH-CH2-CH2-CH2-CH3 OC2H5 CO-NH-CH2-CH2-N(C2H5)2	OC ₂ H ₅ CO-N S N-CH ₂ -CH ₂ -OH	CI CO-N S N-CH ₃	OC_2H_S $CO-N$	0C ₂ H ₅ CO-NH ₂	CH_3 - CH_2 CH_3 OC_2H_5 $CO-N$	СН ₃ -СН ₂ СН ₃ ОС ₂ Н ₅ СО-N S
	R_3	H	H	н		снз	H		СН3	снз
	R_1	CH3-CH2	CH3-CH2	CH ₃ -CH ₂ CH ₃ -CH ₂	СН3-СН2 Н	CH ₃ -CH ₂ CH ₃ Cl	CH3-CH2	CH ₃ -CH ₂ H	CH3-CH2	CH ₃ -CH ₂

(a) Dihydrochloride, m.p. 154-155°.

		0=0	1670	1660	1670		1675
TABLE VIII		IR (c) NH	į		!		;
		но	3430	3450	3440		3440
		R ⁵ ppm (e)	1.53 (t) 4.50 (q)	9.98 (broad)	1.43 (t) 4.48 (q)		1.48 (t) 4.45 (q)
	Compounds	R ⁴ ppm	12.30	9.98 (broad)	12.48 (broad)		12.35 (broad)
	Spectroscopic Properties of Representative Compounds	NMR (a) H ⁶ ppm	8.90	8.80	9.02		8.95
		$ m R^3/H^3$ ppm	8.07	8.33	8.22		2.63
		R ¹ ppm (e)	1.35 (t) 4.45 (q)	1.48 (t) 4.48 (q)	5.68 7.35		1.43 (t) 4.43 (q)
		Structure	N N N N N N N N N N N N N N N N N N N	IN Z TO	2 H ₂ O - CH ₂ O O O O O O O O O O O O O O O O O O O	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	C2H5O-CH3
		Compound Number	X	X (b)	×	;	IIX

.

	0=0	1730	1765	1720	1670
	IR (c) NH	;	}		3290 3180
	НО			3450	;
TABLE VIII (Continued)	R ⁵ ppm (e)	1.57 (t) 4.58 (q)	:	9.47 (broad)	1.33 (t) 4.28 (q)
	R ⁴ ppm	:	1.72(t) 4.83(q)	1.53 (t) 4.78 (q)	3.77 (very broad)
	NMR (a) H ⁶ ppm	86.88	9.35	9.02	8.67
	$ m R^3/H^3$ ppm	8.17	8.27	8.45	2.68
	$ m R^1ppm(e)$	1.45 (t) 4.47 (q)	1.55 (t) 4.62 (q)	1.47 (t) 4.53 (q)	1.30 (t) 4.28 (q)
	Structure	C2H5 0-C2H5 0-C2H5	C - C C H 2 C C H 2 C C C C C C C C C	N	C2H50-C NH-NH2
	Compound Number	Шх	ΛΙΧ	XV (b)	XVI(b)

	0=0	1665	1682	1673	1680
	IR (c) NH	3160	3450 3290	3280	3220
	НО		!	;	!
	R ⁵ ppm (e)	1.43 (t) 4.48 (q)	1.58 (t) 4.55 (q)	1.50 (t)	1.37 (t) 4.38 (q)
	R ⁴ ppm	11.28 (broad) 2.00 2.13	4.48 (broad)	0.80-2.10 (m) 3.65 (sex) 9.17 (t, broad)	7.42 (s, broad) 7.82 (s, broad)
TABLE VIII (Continued)	NMR (a) H ⁶ ppm	8.67	8.97	8.85	9.05
TABLE VIII	R³/H³ppm	2.70	8.05	8.03	6.62
	R¹ppm (e)	1.40 (t) 4.48 (q)	1.42 (t) 4.40 (q)	1.38 (t) 4.35 (q)	1.37 (t) 4.38 (q)
	Structure	C ₂ H ₅ O - C ₂ H ₅ O - C ₂ H ₅ O - C ₂ H ₃ O - C ₂ H	C2H5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2H50-C NNC4H9	C2H5O-C H5O-C HNN CF3
	Compound Number	XVII (b)	XVIII	XIX	XX (b)

	0=0	1675	1680	1710
	IR (c) NH	;	!	;
	НО	3290	3310	3300
	R ⁵ ppm (e)	1.47 (t) 4.50 (q)	1.47 (t) 4.57 (q)	1.50 (t)
TABLE VIII (Continued)	R ⁴ ppm	6.55 10.40 6.77-7.53 (m)	10.07 10.65] broadened 2.18	10.80 (broadened)
	NMR (a) H ⁶ ppm	9.13	8.85	9.18
	$ m R^3/H^3ppm$	8.32	8.40	77.7
	R¹ppm (e)	1.38 (t) 4.38 (q)	1.42(t) 4.48(q)	1.43 (t) 4.40 (g)
	Structure	C ₂ H ₅ O - C N - N - N - O - C NH - NH - C ₆ H ₅	C2H50-C	C2H50-C NH-NCOCH3
	Compound Number	XX.	XXII (b)	XXIII

(a) 20% solution in deuteriochloroform; (b) 20% solution in DMSO-dg; (c) Taken in potassium bromide pellet or as melted film; (e) Superscript indicates position in pyrazolo-pyridine ring. In the case of some compounds, it is not possible to distinguish with certainty between R¹ and R⁵ in the nmr spectrum. We have arbitrarily assigned the downfield signal to the R¹ position in these cases. s = singlet; d = doublet; t = triplet; q = quartet; sex = sextet; m = multiplet.

had been stirred for 1 hour at room temperature, 25 ml. of 10% sodium hydroxide solution was added, and the stirring was continued for an additional 30 minutes. The solid was filtered, washed with water, and air-dried. It weighed $1.1~\rm g.~(85\%)$, m.p. $68\text{-}70^\circ.$

Procedure K. Ethyl 4-(2-Acetylhydrazino)-1-ethyl-1*H*-pyrazolo-[3,4-6] pyridine-5-carboxylate.

To a solution of 4 g. of acetic anhydride in 50 ml. of chloroform, there was added 5.0 g. (0.02 mole) of ethyl 1-ethyl-4-hydrazino-1*H*-pyrazolo[3,4-*b*] pyridine-5-carboxylate, and the mixture was heated under reflux for 1.5 hours. The solution was concentrated to dryness under reduced pressure, and the residue was recrystallized from ethanol. The product, which weighed 4.9 g. (85%), melted at 226-227°.

Procedure L. Ethyl 4-(2,2-Diacetylhydrazino)-1-ethyl-1*H*-pyrazolo-[3,4-6] pyridine-5-carboxylate.

A mixture of 3 g. (0.012 mole) of ethyl 1-ethyl-4-hydrazino-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate and 25 ml. of acetic anhydride was heated at 100° for 1 hour, cooled and filtered to remove the monoacetylated derivative (2.0 g.). The filtrate was stirred with 100 ml. of ice water to hydrolyze the unreacted acetic anhydride. The precipitated solid was filtered, washed with water, air-dried, and recrystallized from *n*-hexane to give 0.4 g. (10%) of product, m.p. 113-114°.

Procedure M. Ethyl 4-Amino-1-ethyl-1*H*-pyrazolo[3,4-*b*] pyridine-5-carboxylate.

A mixture of 10.4 g. (0.04 mole) of ethyl 4-ethoxy-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate and 50 ml. of an ethanolic solution of ammonia (56.5 g. of ammonia in 1 liter of ethanol) was heated in an autoclave at 65° for 15 hours. The reaction mixture was cooled to room temperature and filtered. The solid was washed with a small amount of cold ethanol and dried at 80°. The product, which weighed 7.4 g. (79%), m.p. 180-182°, melted at 181-182° after recrystallization from absolute ethanol. An additional 0.8 g. of crude product was obtained by concentration of the filtrate, for a combined yield of 88%.

Procedure N. Ethyl 4-n-Butylamino-1-ethyl-1*H*-pyrazolo[3,4-*b*]-pyridine-5-carboxylate.

To a solution of 5.08 g. (0.02 mole) of ethyl 4-chloro-1-cthyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate in 20 ml. of benzene, there was added 2.92 g. (0.04 mole) of *n*-butylamine, and the reaction mixture was allowed to remain at room temperature for 2 days. The precipitated *n*-butylamine hydrochloride was removed by filtration, and the filtrate was concentrated to dryness under reduced pressure. The residue, which weighed 5.3 g. (92%), after recrystallization from *n*-hexane melted at $82-83^\circ$.

Procedure O. Ethyl 1-Ethyl-4-anilino-1H-pyrazolo[3,4-b] pyridine-5-carboxylate.

A mixture of 10.1 g. (0.04 mole) of ethyl 4-chloro-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate and 20 ml. of aniline was stirred for 2 hours at 110° , and the unreacted aniline was then removed by distillation under reduced pressure. The residue was suspended in aqueous sodium bicarbonate solution, and the mixture was extracted with chloroform (3 x 100 ml.). The combined chloroform extracts were dried with sodium sulfate and then concentrated under reduced pressure. The residue, which solidified upon cooling, was recrystallized from aqueous ethanol to give 9.2 g. (75%) of product, m.p. $96-97^{\circ}$.

Procedure P. 4-Ethoxy-1-ethyl-1*H*-pyrazolo[3,4-*b*] pyridine-5-carboxylic Acid Chloride.

A mixture of 26.5 g. (0.11 mole) of 4-ethoxy-1-ethyl-1*H*-pyrazolo[3,4-b]pyridine-5-carboxylic acid and 150 ml. of thionyl chloride was heated under reflux for 7 hours. The residue, after removal of the excess thionyl chloride by distillation under reduced pressure, weighed 27 g. (96%) and melted at 116-120°. This material was sufficiently pure to use in subsequent reactions, but it could be recrystallized from cyclohexane, and then melted at 122-124°.

Procedure Q. 4-Ethoxy-1-ethyl-1H-pyrazolo[3,4-b] pyridine-5-n-butylcarboxamide.

To a suspension of 7.5 g. (0.03 mole) of 4-ethoxy-1-ethyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid chloride in 60 ml. of benzene, there was added slowly, with cooling, 4.4 g. (0.06 mole) of n-butylamine. After a short time, the solid dissolved and the solution became clear. The reaction mixture was allowed to remain at room temperature for 24 hours, during which time a precipitate formed. The mixture was filtered, and the solid was washed with water to remove the n-butyl amine hydrochloride. The residue, which weighed 3 g. was combined with an additional 5 g. obtained by concentration of the benzene filtrate, for a total yield of 8 g. (92%), m.p. 119-121°. The product, after recrystallization from a mixture of cyclohexane and benzene, melted at 122-124°.

Procedure R. Ethyl 4-[1-(3,6-Dimethyl-1*H*-pyridazinyl)]-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate.

A solution of 5 g. (0.02 mole) of ethyl 1-ethyl-4-hydrazino-1H-pyrazolo[3,4-b] pyridine-5-carboxylate in 75 ml. of absolute ethanol was treated with 5 ml. of an 8.2 N ethanolic hydrogen chloride solution, followed by the addition of 2.3 g. (0.02 mole) of 2,5-hexanedione. The reaction mixture was heated under reflux for 3 hours and then allowed to remain at room temperature for 2 days. The mixture was filtered to remove an insoluble precipitate, and the filtrate was concentrated to dryness under reduced pressure. The residue was suspended in aqueous sodium carbonate solution to liberate the free base, which was then filtered and washed with water and with ether. The solid, which weighed 5.6 g. (86%), melted at 152-155°. The product, after recrystallization from absolute ethanol, melted at 155-157°.

Procedure S. 4-Ethoxy-1-ethyl-1H-pyrazolo[3,4-b] pyridine-5-carboxamide.

To 700 ml. of concentrated aqueous ammonia, there was added, with vigorous stirring, 34.4 g. (0.136 mole) of 4-ethoxy-1-ethyl-1*H*-pyrazolo[3,4-*b*] pyridine-5-carboxylic acid chloride. The solid appeared to go into solution, and a new crystalline solid then precipitated. The reaction mixture was stirred for 3 hours at room temperature and filtered. The solid was washed with water and air-dried; it weighed 22.7 g. (71%), m.p. 183-185°. After recrystallization from benzene, the product melted at 184-185°.

Acknowledgement.

The authors are indebted to Dr. O. Wiedemann, Munich, Chairman of Chemische Fabrik von Heyden GMBH, and to Dr. J. Bernstein, The Squibb Institute for Medical Research, New Brunswick, New Jersey, for helpful discussions, and to Mr. R. Baer, Regensburg, for assistance in the preparation of these compounds.

REFERENCES

- (1) S. Checchi, P. Papini and M. Ridi, Gazz. Chim. Ital., 85, 1160 (1955).
- (2) P. Schmidt, K. Meier and J. Druey, *Angew. Chem.*, 70, 344 (1958).
- (3) E. C. Taylor and J. W. Barton, J. Am. Chem. Soc., 81, 2448 (1959).
 - (4) A. Dornow and M. Siebrecht, Chem. Ber., 93, 1106 (1960).
 - (5) U. Schmidt and G. Giesselmann, ibid., 93, 1593 (1960).
- (6) J. J. Grandberg and S. V. Tabak, Khim. Geterotsikl. Soedin., Akad. Nauk Latv. SSR, 112-115 (1965); Chem. Abstr., 63, 5625 (1965)
- (7) G. M. Badger and R. P. Rao, Aust. J. Chem., 18, 1267 (1965).
 - (8) H. Dorn and A. Zubeck, Angew. Chem., 79, 981 (1967).
- (9) R. P. Rao, Rec. Chem., Progr., Kresge-Hooker Sci. Lib., 29, 106-108 (1968).

- (10) H. Dorn and A. Zubeck, Chem. Ber., 101, 3265 (1968).
- (11) H. Dorn and A. Zubeck, DP (Wirtschaftspatent DDR) 63,508 (1968).
 - (12) DIBA Ltd., British Patent 1,115,254 (1968).
- (13) M. Chasin, Federation Proc., 30, 1268 (1971); C. A. Free, M. Chasin, V. S. Paik and S. M. Hess, ibid., 30, 1268 (1971).
- (14) H. Höhn, Z. Chem., 10, 386-388 (1970).
- (15) The proton nmr spectra were taken with a Varian T-60; in deuteriochloroform tetramethylsilane was used as reference and lock signal, in DMSO-d₆ trimethylsilylpropanesulfonic acid (sodium salt) was used. Ir spectra were run on a Perkin-Elmer IR-21.
- (16) M. S. Puar, B. T. Keeler and A I. Cohen, *J. Org. Chem.*, 36, 219 (1971).
- (17) L. J. Bellamy "Ultrarot Spektrum und chem. Konstitution," Steinkopff Verlag, Darmstadt, 1966, 144 ff.
- (18) R. A. J. Jones, A. K. Katritzky and J. M. Lagowski, *Chem. Ind. (London)*, 570 (1960).
 - (19) W. Brugel, Z. Elektrochem., 66, 159 (1962).